Title | Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight. [Drosophila facility] |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | Agrawal N, Venkiteswaran G, Sadaf S, Padmanabhan N, Banerjee S, Hasan G |
Journal | J Neurosci |
Volume | 30 |
Issue | 4 |
Pagination | 1301-13 |
Date Published | 2010 Jan 27 |
ISSN | 1529-2401 |
Keywords | Animals, Calcium, Calcium Signaling, Cell Membrane, Cells, Cultured, Central Nervous System, Drosophila, Drosophila Proteins, Flight, Animal, Homeostasis, Inositol 1,4,5-Trisphosphate Receptors, Insulin, Intracellular Fluid, Membrane Proteins, Mutation, Neural Pathways, Neurons, Pupa, Stromal Interaction Molecule 1 |
Abstract | Calcium (Ca(2+)) signaling is known to regulate the development, maintenance and modulation of activity in neuronal circuits that underlie organismal behavior. In Drosophila, intracellular Ca(2+) signaling by the inositol 1,4,5-trisphosphate receptor and the store-operated channel (dOrai) regulates the formation and function of neuronal circuits that control flight. Here, we show that restoring InsP(3)R activity in insulin-producing neurons of flightless InsP(3)R mutants (itpr) during pupal development can rescue systemic flight ability. Expression of the store operated Ca(2+) entry (SOCE) regulator dSTIM in insulin-producing neurons also suppresses compromised flight ability of InsP(3)R mutants suggesting that SOCE can compensate for impaired InsP(3)R function. Despite restricted expression of wild-type InsP(3)R and dSTIM in insulin-producing neurons, a global restoration of SOCE and store Ca(2+) is observed in primary neuronal cultures from the itpr mutant. These results suggest that restoring InsP(3)R-mediated Ca(2+) release and SOCE in a limited subset of neuromodulatory cells can influence systemic behaviors such as flight by regulating intracellular Ca(2+) homeostasis in a large population of neurons through a non-cell-autonomous mechanism. |
DOI | 10.1523/JNEUROSCI.3668-09.2010 |
Alternate Journal | J. Neurosci. |
PubMed ID | 20107057 |
- Log in to post comments
- Google Scholar
- PubMed
- BibTex