@article {513, title = {L-Plastin S-glutathionylation promotes reduced binding to β-actin and affects neutrophil functions. (Mass Spectrometry)}, journal = {Free Radic Biol Med}, volume = {86}, year = {2015}, month = {2015 Sep}, pages = {1-15}, abstract = {

Posttranslational modifications (PTMs) of cytoskeleton proteins due to oxidative stress associated with several pathological conditions often lead to alterations in cell function. The current study evaluates the effect of nitric oxide (DETA-NO)-induced oxidative stress-related S-glutathionylation of cytoskeleton proteins in human PMNs. By using in vitro and genetic approaches, we showed that S-glutathionylation of L-plastin (LPL) and β-actin promotes reduced chemotaxis, polarization, bactericidal activity, and phagocytosis. We identified Cys-206, Cys-283, and Cys-460as S-thiolated residues in the β-actin-binding domain of LPL, where cys-460 had the maximum score. Site-directed mutagenesis of LPL Cys-460 further confirmed the role in the redox regulation of LPL. S-Thiolation diminished binding as well as the bundling activity of LPL. The presence of S-thiolated LPL was detected in neutrophils from both diabetic patients and db/db mice with impaired PMN functions. Thus, enhanced nitroxidative stress may results in LPL S-glutathionylation leading to impaired chemotaxis, polarization, and bactericidal activity of human PMNs, providing a mechanistic basis for their impaired functions in diabetes mellitus.

}, keywords = {Actins, Adult, Amino Acid Sequence, Animals, Case-Control Studies, Cell Polarity, Chemotaxis, Diabetes Mellitus, Female, Glutathione, HEK293 Cells, Humans, Male, Mice, Inbred C57BL, Mice, Obese, Microfilament Proteins, Middle Aged, Molecular Sequence Data, Neutrophils, Nitric Oxide, Oxidative Stress, Protein Binding, Protein Processing, Post-Translational, Young Adult}, issn = {1873-4596}, doi = {10.1016/j.freeradbiomed.2015.04.008}, author = {Dubey, Megha and Singh, Abhishek K and Awasthi, Deepika and Nagarkoti, Sheela and Kumar, Sachin and Ali, Wahid and Chandra, Tulika and Kumar, Vikas and Barthwal, Manoj K and Jagavelu, Kumaravelu and S{\'a}nchez-G{\'o}mez, Francisco J and Lamas, Santiago and Dikshit, Madhu} } @article {536, title = {Does reversible cysteine oxidation link the Western diet to cardiac dysfunction?}, journal = {FASEB J}, volume = {28}, year = {2014}, month = {2014 May}, pages = {1975-87}, abstract = {

Using a novel cysteine thiol labeling strategy coupled with mass spectrometric analysis, we identified and quantified the changes in global reversible cysteine oxidation of proteins in the left ventricle of hearts from mice with metabolic syndrome-associated diastolic dysfunction. This phenotype was induced by feeding a high-fat, high-sucrose, type-2 diabetogenic diet to C57BL/6J mice for 8 mo. The extent of reversible thiol oxidation in relationship to the total available (free and reducible) level of each cysteine could be confidently determined for 173 proteins, of which 98 contained cysteines differentially modified >=1.5-fold by the diet. Our findings suggest that the metabolic syndrome leads to potentially deleterious changes in the oxidative modification of metabolically active proteins. These alterations may adversely regulate energy substrate flux through glycolysis, β-oxidation, citric acid (TCA) cycle, and oxidative phosphorylation (oxphos), thereby contributing to maladaptive tissue remodeling that is associated with, and possibly contributing to, diastolic left ventricular dysfunction.

}, keywords = {Animals, Chromatography, Liquid, Citric Acid Cycle, Cysteine, Diet, Fatty Acids, Glycolysis, Heart Diseases, Male, Mice, Mice, Inbred C57BL, Myocardial Contraction, Myocardium, Obesity, Oxidative Phosphorylation, Oxygen, Phenotype, Protein Processing, Post-Translational, Proteomics, Reactive Nitrogen Species, Reactive Oxygen Species, Sulfhydryl Compounds, Tandem Mass Spectrometry}, issn = {1530-6860}, doi = {10.1096/fj.13-233445}, author = {Behring, Jessica B and Kumar, Vikas and Whelan, Stephen A and Chauhan, Pratibha and Siwik, Deborah A and Costello, Catherine E and Colucci, Wilson S and Cohen, Richard A and McComb, Mark E and Bachschmid, Markus M} } @article {714, title = {Distinct spatial and molecular features of notch pathway assembly in regulatory T cells.}, journal = {Sci Signal}, volume = {5}, year = {2012}, month = {2012 Jul 24}, pages = {ra53}, abstract = {

Variations in the spatial localization of signaling components and crosstalk among signaling cascades are mechanisms through which diversity in signaling networks is generated. The receptor Notch provides an example of regulation by spatial localization: In the canonical Notch signaling pathway, Notch is cleaved to produce the Notch intracellular domain (NICD, also known as NIC), which translocates to the nucleus to regulate gene expression. We describe a T cell receptor-dependent, non-nuclear distribution and function of the processed receptor Notch, which was associated with the improved survival of regulatory T cells (T(regs)) in vitro and in vivo and was compromised by T cell-specific deletion of Notch1. Unlike a nuclear-restricted mutant of NICD, mutant NICD that underwent nuclear export or was targeted to the plasma membrane protected Notch1(-/-) T(regs) from apoptosis induced by nutrient deprivation and oxidative stress. Notch signaling integrated with phosphatidylinositol 3-kinase signaling and mammalian target of rapamycin complex 2 (mTORC2) for this cell survival function. Biochemical and imaging approaches revealed a membrane-proximal complex containing NICD and the mTORC2 component Rictor, and this complex was stabilized by specific interactions with the Notch ligand Delta-like-1 and mediated the survival of T(regs). Together, our evidence for the spatial control of Notch and the crosstalk of Notch signaling with other pathways reveals coupling between the localization of Notch and diverse intracellular signaling pathways.

}, keywords = {Animals, Apoptosis, Blotting, Western, Carrier Proteins, Cell Line, Cell Membrane, Cell Survival, Flow Cytometry, Gene Knockout Techniques, Humans, Immunoprecipitation, Intercellular Signaling Peptides and Proteins, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Phosphatidylinositol 3-Kinase, Rapamycin-Insensitive Companion of mTOR Protein, Receptor Cross-Talk, Receptor, Notch1, Signal Transduction, T-Lymphocytes, Regulatory, Trans-Activators, Transcription Factors}, issn = {1937-9145}, doi = {10.1126/scisignal.2002859}, author = {Perumalsamy, Lakshmi R and Marcel, Nimi and Kulkarni, Sneha and Radtke, Freddy and Sarin, Apurva} }