@article {1458, title = {The Hox gene uses Doublesex as a cofactor to promote neuroblast apoptosis in the central nervous system [Transgenic Fly Facility]}, journal = {Development}, volume = {146}, year = {2019}, month = {2019 08 22}, abstract = {

Highly conserved DM domain-containing transcription factors (Doublesex/MAB-3/DMRT1) are responsible for generating sexually dimorphic features. In the central nervous system, a set of Doublesex (Dsx)-expressing neuroblasts undergo apoptosis in females whereas their male counterparts proliferate and give rise to serotonergic neurons crucial for adult mating behaviour. Our study demonstrates that the female-specific isoform of Dsx collaborates with Hox gene () to bring about this apoptosis. Biochemical results suggest that proteins AbdB and Dsx interact through their highly conserved homeodomain and DM domain, respectively. This interaction is translated into a cooperative binding of the two proteins on the apoptotic enhancer in the case of females but not in the case of males, resulting in female-specific activation of apoptotic genes. The capacity of AbdB to use the sex-specific isoform of Dsx as a cofactor underlines the possibility that these two classes of protein are capable of cooperating in selection and regulation of target genes in a tissue- and sex-specific manner. We propose that this interaction could be a common theme in generating sexual dimorphism in different tissues across different species.

}, keywords = {Animals, Apoptosis, DNA-Binding Proteins, Drosophila, Drosophila Proteins, Female, Gene Expression Regulation, Developmental, Genes, Homeobox, Homeodomain Proteins, Male, Neural Stem Cells, Protein Isoforms, Sex Characteristics}, issn = {1477-9129}, doi = {10.1242/dev.175158}, author = {Ghosh, Neha and Bakshi, Asif and Khandelwal, Risha and Rajan, Sriivatsan Govinda and Joshi, Rohit} } @article {683, title = {Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS.}, journal = {PLoS Genet}, volume = {13}, year = {2017}, month = {2017 Oct}, pages = {e1007043}, abstract = {

Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transcriptionally contribute to expression of RHG family of apoptotic genes. We find that Grh, AbdA, and Exd function together at multiple motifs on the apoptotic enhancer. In vivo mutagenesis of these motifs suggest that they are important for the maintenance of the activity of the enhancer rather than its initiation. We also find that Exd function is independent of its known partner homothorax in this apoptosis. We extend some of our findings to Deformed expressing region of sub-esophageal ganglia where pNBs undergo a similar Hox dependent apoptosis. We propose a mechanism where common players like Exd-Grh-Notch work with different Hox genes through region specific enhancers to pattern respective segments of larval central nervous system.

}, keywords = {Amino Acid Sequence, Animals, Apoptosis, Central Nervous System, DNA-Binding Proteins, Drosophila, Drosophila Proteins, Enhancer Elements, Genetic, Female, Gene Expression Regulation, Developmental, Genes, Homeobox, Homeodomain Proteins, Larva, Male, Nuclear Proteins, Receptors, Notch, Transcription Factors}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1007043}, author = {Khandelwal, Risha and Sipani, Rashmi and Govinda Rajan, Sriivatsan and Kumar, Raviranjan and Joshi, Rohit} } @article {484, title = {Genomic analysis reveals epistatic silencing of "expensive" genes in Escherichia coli K-12. [Next Generation Genomics facility]}, journal = {Mol Biosyst}, volume = {9}, year = {2013}, month = {2013 Aug}, pages = {2021-33}, abstract = {

A barrier for horizontal gene transfer is high gene expression, which is metabolically expensive. Silencing of horizontally-acquired genes in the bacterium Escherichia coli is caused by the global transcriptional repressor H-NS. The activity of H-NS is enhanced or diminished by other proteins including its homologue StpA, and Hha and YdgT. The interconnections of H-NS with these regulators and their role in silencing gene expression in E. coli are not well understood on a genomic scale. In this study, we use transcriptome sequencing to show that there is a bi-layered gene silencing system - involving the homologous H-NS and StpA - operating on horizontally-acquired genes among others. We show that H-NS-repressed genes belong to two types, termed "epistatic" and "unilateral". In the absence of H-NS, the expression of "epistatically controlled genes" is repressed by StpA, whereas that of "unilaterally controlled genes" is not. Epistatic genes show a higher tendency to be non-essential and recently acquired, when compared to unilateral genes. Epistatic genes reach much higher expression levels than unilateral genes in the absence of the silencing system. Finally, epistatic genes contain more high affinity H-NS binding motifs than unilateral genes. Therefore, both the DNA binding sites of H-NS as well as the function of StpA as a backup system might be selected for silencing highly transcribable genes.

}, keywords = {Binding Sites, DNA-Binding Proteins, Epistasis, Genetic, Escherichia coli K12, Escherichia coli Proteins, Fimbriae Proteins, Gene Expression Regulation, Bacterial, Gene Silencing, Gene Transfer, Horizontal, Genome, Bacterial, Molecular Chaperones, Protein Binding, Repressor Proteins, Sequence Analysis, DNA, Transcription, Genetic, Transcriptome}, issn = {1742-2051}, doi = {10.1039/c3mb70035f}, author = {Srinivasan, Rajalakshmi and Chandraprakash, Deepti and Krishnamurthi, Revathy and Singh, Parul and Scolari, Vittore F and Krishna, Sandeep and Seshasayee, Aswin Sai Narain} } @article {721, title = {Synaptic activity in serotonergic neurons is required for air-puff stimulated flight in Drosophila melanogaster.}, journal = {PLoS One}, volume = {7}, year = {2012}, month = {2012}, pages = {e46405}, abstract = {

BACKGROUND: Flight is an integral component of many complex behavioral patterns in insects. The giant fiber circuit has been well studied in several insects including Drosophila. However, components of the insect flight circuit that respond to an air-puff stimulus and comprise the flight central pattern generator are poorly defined. Aminergic neurons have been implicated in locust, moth and Drosophila flight. Here we have investigated the requirement of neuronal activity in serotonergic neurons, during development and in adults, on air-puff induced flight in Drosophila.

METHODOLOGY/PRINCIPAL FINDINGS: To target serotonergic neurons specifically, a Drosophila strain that contains regulatory regions from the TRH (Tryptophan Hydroxylase) gene linked to the yeast transcription factor GAL4 was used. By blocking synaptic transmission from serotonergic neurons with a tetanus toxin transgene or by hyperpolarisation with Kir2.1, close to 50\% adults became flightless. Temporal expression of a temperature sensitive Dynamin mutant transgene (Shi(ts)) suggests that synaptic function in serotonergic neurons is required both during development and in adults. Depletion of IP(3)R in serotonergic neurons via RNAi did not affect flight. Interestingly, at all stages a partial requirement for synaptic activity in serotonergic neurons was observed. The status of serotonergic neurons was investigated in the central nervous system of larvae and adults expressing tetanus toxin. A small but significant reduction was observed in serotonergic cell number in adult second thoracic segments from flightless tetanus toxin expressing animals.

CONCLUSIONS: These studies show that loss of synaptic activity in serotonergic neurons causes a flight deficit. The temporal focus of the flight deficit is during pupal development and in adults. The cause of the flight deficit is likely to be loss of neurons and reduced synaptic function. Based on the partial phenotypes, serotonergic neurons appear to be modulatory, rather than an intrinsic part of the flight circuit.

}, keywords = {Animals, Cell Count, Central Nervous System, DNA-Binding Proteins, Drosophila melanogaster, Drosophila Proteins, Dynamins, Flight, Animal, Gene Expression Regulation, Developmental, Larva, Potassium Channels, Inwardly Rectifying, Pupa, Saccharomyces cerevisiae Proteins, Serotonergic Neurons, Synaptic Transmission, Tetanus Toxin, Transcription Factors, Transgenes, Tryptophan Hydroxylase}, issn = {1932-6203}, doi = {10.1371/journal.pone.0046405}, author = {Sadaf, Sufia and Birman, Serge and Hasan, Gaiti} }